211 research outputs found

    A new graph-based method for pairwise global network alignment

    Get PDF

    A new graph-based method for pairwise global network alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to component-based comparative approaches, <it>network alignments </it>provide the means to study conserved network topology such as common pathways and more complex network motifs. Yet, unlike in classical sequence alignment, the comparison of networks becomes computationally more challenging, as most meaningful assumptions instantly lead to <it>NP</it>-hard problems. Most previous algorithmic work on network alignments is heuristic in nature.</p> <p>Results</p> <p>We introduce the graph-based <it>maximum structural matching </it>formulation for pairwise global network alignment. We relate the formulation to previous work and prove <it>NP</it>-hardness of the problem.</p> <p>Based on the new formulation we build upon recent results in computational structural biology and present a novel Lagrangian relaxation approach that, in combination with a branch-and-bound method, computes provably optimal network alignments. The Lagrangian algorithm alone is a powerful heuristic method, which produces solutions that are often near-optimal and – unlike those computed by pure heuristics – come with a quality guarantee.</p> <p>Conclusion</p> <p>Computational experiments on the alignment of protein-protein interaction networks and on the classification of metabolic subnetworks demonstrate that the new method is reasonably fast and has advantages over pure heuristics. Our software tool is freely available as part of the L<smcaps>I</smcaps>SA library.</p

    Next Generation Cluster Editing

    Get PDF
    This work aims at improving the quality of structural variant prediction from the mapped reads of a sequenced genome. We suggest a new model based on cluster editing in weighted graphs and introduce a new heuristic algorithm that allows to solve this problem quickly and with a good approximation on the huge graphs that arise from biological datasets

    A combinatorial approach to orthogonal placement problems

    Get PDF
    liegt nicht vor!Wir betrachten zwei Familien von NP-schwierigen orthogonalen Platzierungsproblemen aus dem Bereich der Informationsvisualisierung von einem theoretischen und praktischen Standpunkt aus. Diese Arbeit enthält ein gemeinsames kombinatorisches Gerüst für Kompaktierungsprobleme aus dem Bereich des orthogonalen Graphenzeichnens und Beschriftungsprobleme von Punktmengen aus dem Gebiet der Computer-Kartografie. Bei den Kompaktierungsproblemen geht es darum, eine gegebene dimensionslose Beschreibung der orthogonalen Form eines Graphen in eine orthogonale Gitterzeichnung mit kurzen Kanten und geringem Flächenverbrauch zu transformieren. Die Beschriftungsprobleme haben zur Aufgabe, eine gegebene Menge von rechteckigen Labels so zu platzieren, dass eine lesbare Karte entsteht. In einer klassischen Anwendung repräsentieren die Punkte beispielsweise Städte einer Landkarte, und die Labels enthalten die Namen der Städte. Wir präsentieren neue kombinatorische Formulierungen für diese Probleme und verwenden dabei eine pfad- und kreisbasierte graphentheoretische Eigenschaft in einem zugehörigen problemspezifschen Paar von Constraint-Graphen. Die Umformulierung ermöglicht es uns, exakte Algorithmen für die Originalprobleme zu entwickeln. Umfassende experimentelle Studien mit Benchmark-Instanzen aus der Praxis zeigen, dass unsere Algorithmen, die auf linearer Programmierung beruhen, in der Lage sind, große Instanzen der Platzierungsprobleme beweisbar optimal und in kurzer Rechenzeit zu lösen. Ferner kombinieren wir die Formulierungen für Kompaktierungs- und Beschriftungsprobleme und präsentieren einen exakten algorithmischen Ansatz für ein Graphbeschriftungsproblem. Oftmals sind unsere neuen Algorithmen die ersten exakten Algorithmen für die jeweilige Problemvariante

    An exact mathematical programming approach to multiple RNA sequence-structure alignment

    Get PDF
    One of the main tasks in computational biology is the computation of alignments of genomic sequences to reveal their commonalities. In case of DNA or protein sequences, sequence information alone is usually sufficient to compute reliable alignments. RNA molecules, however, build spatial conformations—the secondary structure—that are more conserved than the actual sequence. Hence, computing reliable alignments of RNA molecules has to take into account the secondary structure. We present a novel framework for the computation of exact multiple sequence-structure alignments: We give a graph- theoretic representation of the sequence-structure alignment problem and phrase it as an integer linear program. We identify a class of constraints that make the problem easier to solve and relax the original integer linear program in a Lagrangian manner. Experiments on a recently published benchmark show that our algorithms has a comparable performance than more costly dynamic programming algorithms, and outperforms all other approaches in terms of solution quality with an increasing number of input sequences

    A combinatorial approach to orthogonal placement problems

    Get PDF
    liegt nicht vor!Wir betrachten zwei Familien von NP-schwierigen orthogonalen Platzierungsproblemen aus dem Bereich der Informationsvisualisierung von einem theoretischen und praktischen Standpunkt aus. Diese Arbeit enthält ein gemeinsames kombinatorisches Gerüst für Kompaktierungsprobleme aus dem Bereich des orthogonalen Graphenzeichnens und Beschriftungsprobleme von Punktmengen aus dem Gebiet der Computer-Kartografie. Bei den Kompaktierungsproblemen geht es darum, eine gegebene dimensionslose Beschreibung der orthogonalen Form eines Graphen in eine orthogonale Gitterzeichnung mit kurzen Kanten und geringem Flächenverbrauch zu transformieren. Die Beschriftungsprobleme haben zur Aufgabe, eine gegebene Menge von rechteckigen Labels so zu platzieren, dass eine lesbare Karte entsteht. In einer klassischen Anwendung repräsentieren die Punkte beispielsweise Städte einer Landkarte, und die Labels enthalten die Namen der Städte. Wir präsentieren neue kombinatorische Formulierungen für diese Probleme und verwenden dabei eine pfad- und kreisbasierte graphentheoretische Eigenschaft in einem zugehörigen problemspezifschen Paar von Constraint-Graphen. Die Umformulierung ermöglicht es uns, exakte Algorithmen für die Originalprobleme zu entwickeln. Umfassende experimentelle Studien mit Benchmark-Instanzen aus der Praxis zeigen, dass unsere Algorithmen, die auf linearer Programmierung beruhen, in der Lage sind, große Instanzen der Platzierungsprobleme beweisbar optimal und in kurzer Rechenzeit zu lösen. Ferner kombinieren wir die Formulierungen für Kompaktierungs- und Beschriftungsprobleme und präsentieren einen exakten algorithmischen Ansatz für ein Graphbeschriftungsproblem. Oftmals sind unsere neuen Algorithmen die ersten exakten Algorithmen für die jeweilige Problemvariante

    On optimal comparability editing with applications to molecular diagnostics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The C<smcaps>OMPARABILITY</smcaps> E<smcaps>DITING</smcaps> problem appears in the context of hierarchical disease classification based on noisy data. We are given a directed graph <it>G </it>representing hierarchical relationships between patient subgroups. The task is to identify the minimum number of edge insertions or deletions to transform <it>G </it>into a transitive graph, that is, if edges (<it>u</it>, <it>v</it>) and (<it>v</it>, <it>w</it>) are present then edge (<it>u</it>, <it>w</it>) must be present, too.</p> <p>Results</p> <p>We present two new approaches for the problem based on fixed-parameter algorithmics and integer linear programming. In contrast to previously used heuristics, our approaches compute provably optimal solutions.</p> <p>Conclusion</p> <p>Our computational results demonstrate that our exact algorithms are by far more efficient in practice than a previously used heuristic approach. In addition to the superior running time performance, our algorithms are capable of enumerating all optimal solutions, and naturally solve the weighted version of the problem.</p

    Antilope - A Lagrangian Relaxation Approach to the de novo Peptide Sequencing Problem

    Full text link
    Peptide sequencing from mass spectrometry data is a key step in proteome research. Especially de novo sequencing, the identification of a peptide from its spectrum alone, is still a challenge even for state-of-the-art algorithmic approaches. In this paper we present Antilope, a new fast and flexible approach based on mathematical programming. It builds on the spectrum graph model and works with a variety of scoring schemes. Antilope combines Lagrangian relaxation for solving an integer linear programming formulation with an adaptation of Yen's k shortest paths algorithm. It shows a significant improvement in running time compared to mixed integer optimization and performs at the same speed like other state-of-the-art tools. We also implemented a generic probabilistic scoring scheme that can be trained automatically for a dataset of annotated spectra and is independent of the mass spectrometer type. Evaluations on benchmark data show that Antilope is competitive to the popular state-of-the-art programs PepNovo and NovoHMM both in terms of run time and accuracy. Furthermore, it offers increased flexibility in the number of considered ion types. Antilope will be freely available as part of the open source proteomics library OpenMS
    • …
    corecore